MEI STRUCTURED MATHEMATICS

INTRODUCTION TO ADVANCED MATHEMATICS, C1

Practice Paper C1-B

Additional materials: Answer booklet/paper
Graph paper
MEI Examination formulae and tables (MF12)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer all the questions.
- You may use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that you may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is $\mathbf{7 2}$.

Section A (36 marks)

1 Make a the subject of the equation $s=u t+\frac{1}{2} a t^{2}$.

2 (i) Find the constants a and b such that, for all values of x,

$$
\begin{equation*}
x^{2}+4 x+14=(x+a)^{2}+b \tag{3}
\end{equation*}
$$

(ii) Write down the greatest value of $\frac{1}{x^{2}+4 x+14}$.

3 Find the term independent of x in the expansion of $\left(x-\frac{2}{x}\right)^{4}$.

4 The coordinates of the points A, B and C are ($-2,2$), (1,3) and (3, -3) respectively.
(i) Find the gradients of the lines AB and BC .
(ii) Show that the triangle ABC is a right-angled triangle.
(iii) Find the area of the triangle ABC .
$5 \quad$ You are given that $\mathrm{f}(x)=x^{3}-7 x+6$.
(i) Show that $(x-2)$ is a factor of $\mathrm{f}(x)$.
(ii) Solve the equation $\mathrm{f}(x)=0$.

6 List the integers which satisfy both of the following inequalities:

$$
\begin{equation*}
2 x-9<0, \quad 8-x \leq 6 \tag{3}
\end{equation*}
$$

7 (a) Express $(2+\sqrt{3})^{2}$ in the form $a+b \sqrt{3}$ where a and b are integers to be determined.
(b) Given that x and y are integers, prove that $\frac{1}{x-\sqrt{y}}+\frac{1}{x+\sqrt{y}}$ can be written in the form $\frac{p}{q}$ where p and q are both integers.

8 Find the equation of the line that passes through the point $(1,2)$ and is perpendicular to the line $3 x+2 y=5$.

9 (i) Show that $(x-1)(x-2)(x-3)-\left(x^{3}-x^{2}+11 x-12\right)=6-5 x^{2}$.
(ii) Solve the equation $6-5 x^{2}=0$.

Section B (36 marks)

10 (i) A quadratic function is given by $\mathrm{f}(x)=x^{2}-6 x+8$.
Sketch the graph of $y=\mathrm{f}(x)$, giving the coordinates of the points where it crosses the axes. Mark the lowest point on the curve, and give its coordinates.
(ii) Solve the inequality $x^{2}-6 x+8<0$.
(iii) On the same graph, sketch $y=\mathrm{f}(x+3)$.
(iv) The graph of $y=\mathrm{f}(x+3)-2$ is obtained from the graph of $y=\mathrm{f}(x)$ by a transformation. Describe the transformation and sketch the curve on the same axes as in (i) and (iii) above. Label all these curves clearly.

11 (i) Show algebraically that the equation $x^{2}-6 x+10=0$ has no real roots.
(ii) Solve algebraically the simultaneous equations $y=x^{2}-6 x+10$ and $y+2 x=7$.
(iii) Plot the graph of the function $y=x^{2}-6 x+10$ on graph paper, taking $1 \mathrm{~cm}=1$ unit on each axis, with the x axis from 0 to 6 and the y axis from -2 to 10 .
On the same axes plot the line with equation $y+2 x=7$ showing clearly where the line cuts the quadratic curve.
(iv) Explain why these x coordinates satisfy the equation $x^{2}-4 x+3=0$.

Plot a graph of the function $y=x^{2}-4 x+3$ on the same axes to illustrate your answer.

12 You are given that the equation of the circle shown in Fig. 12 is

$$
x^{2}+y^{2}-4 x-6 y-12=0
$$

Fig. 12
(i) Show that the centre, Q , of the circle is $(2,3)$ and find the radius.
(ii) The circle crosses the x-axis at B and C .

Show that the coordinates of C are $(6,0)$ and find the coordinates of B.
(iii) Find the gradient of the line QC and hence find the equation of the tangent to the circle at C .
(iv) Given that M is the mid-point of BC , find the coordinates of the point where QM meets the tangent at C .

