

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

INTRODUCTION TO ADVANCED MATHEMATICS, C1

Practice Paper C1-B

Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF12)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions.
- You **may** use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that you may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.

Section A (36 marks)

1 Make *a* the subject of the equation
$$s = ut + \frac{1}{2}at^2$$
. [3]

2 (i) Find the constants *a* and *b* such that, for all values of *x*,

$$x^{2} + 4x + 14 = (x + a)^{2} + b.$$
[3]

(ii) Write down the greatest value of $\frac{1}{x^2 + 4x + 14}$. [1]

3 Find the term independent of x in the expansion of $\left(x - \frac{2}{x}\right)^4$. [3]

- 4 The coordinates of the points A, B and C are (-2, 2), (1, 3) and (3, -3) respectively.
 - (i) Find the gradients of the lines AB and BC. [2](ii) Show that the triangle ABC is a right-angled triangle. [1]
 - (iii) Find the area of the triangle ABC. [2]
- 5 You are given that $f(x) = x^3 7x + 6$.
 - (i) Show that (x 2) is a factor of f(x). [1]
 - (ii) Solve the equation f(x) = 0. [4]
- 6 List the integers which satisfy both of the following inequalities:

$$2x - 9 < 0, \quad 8 - x \le 6.$$
 [3]

7 (a) Express $(2+\sqrt{3})^2$ in the form $a+b\sqrt{3}$ where a and b are integers to be determined. [2]

(b) Given that x and y are integers, prove that $\frac{1}{x - \sqrt{y}} + \frac{1}{x + \sqrt{y}}$ can be written in the

form
$$\frac{p}{q}$$
 where p and q are both integers. [3]

8 Find the equation of the line that passes through the point (1, 2) and is perpendicular to the line 3x + 2y = 5. [3]

9 (i) Show that
$$(x-1)(x-2)(x-3) - (x^3 - x^2 + 11x - 12) = 6 - 5x^2$$
. [3]

(ii) Solve the equation $6 - 5x^2 = 0$. [2]

Section B (36 marks)

- 10 (i) A quadratic function is given by $f(x) = x^2 6x + 8$. Sketch the graph of y = f(x), giving the coordinates of the points where it crosses the axes. Mark the lowest point on the curve, and give its coordinates. [5]
 - (ii) Solve the inequality $x^2 6x + 8 < 0.$ [2]
 - (iii) On the same graph, sketch y = f(x + 3). [2]
 - (iv) The graph of y = f(x + 3) 2 is obtained from the graph of y = f(x) by a transformation. Describe the transformation and sketch the curve on the same axes as in (i) and (iii) above. Label all these curves clearly. [3]
- 11 (i) Show algebraically that the equation $x^2 6x + 10 = 0$ has no real roots. [2]
 - (ii) Solve algebraically the simultaneous equations $y = x^2 6x + 10$ and y + 2x = 7. [4]
 - (iii) Plot the graph of the function $y = x^2 6x + 10$ on graph paper, taking 1 cm = 1 unit on each axis, with the x axis from 0 to 6 and the y axis from -2 to 10. On the same axes plot the line with equation y + 2x = 7 showing clearly where the line cuts the quadratic curve. [3]
 - (iv) Explain why these x coordinates satisfy the equation $x^2 4x + 3 = 0$. Plot a graph of the function $y = x^2 - 4x + 3$ on the same axes to illustrate your answer. [3]

© MEI July 2004 MEI Structured Mathematics Practice Paper C1-B Page 3

12 You are given that the equation of the circle shown in Fig. 12 is

Fig. 12

(i)	Show that the centre, Q, of the circle is (2, 3) and find the radius.	[4]
(ii)	The circle crosses the <i>x</i> -axis at B and C. Show that the coordinates of C are (6, 0) and find the coordinates of B.	[3]
(iii)	Find the gradient of the line QC and hence find the equation of the tangent to the circle at C.	[3]

(iv) Given that M is the mid-point of BC, find the coordinates of the point where QM meets the tangent at C. [2]